三角函数给角求值

前言

三角函数中的给角求值类问题,大多给定的是分式形式,或者可以化为分式形式的,比如含有弦和切,当切化弦后就变成了分式;并且这类题目往往需要将非特殊角拆分,然后最后一步约掉含有非特殊角的代数式,就得到了最终的值。 注意高频变形:分式约分,和加减抵消;

相关变形

  • 切化弦[整式变分式],1的代换,分式通分约分,根式升幂;配方展开,提取公因式,公式的逆用,变用,
  • 常用的互余、互补代换:\(sin70^{\circ}=cos20^{\circ}\)\(cos40^{\circ}=sin50^{\circ}\)\(sin140^{\circ}=sin40^{\circ}\)\(cos110^{\circ}=-sin70^{\circ}=-cos20^{\circ}\)
  • 常见的角的拆分:

\(47^{\circ}=17^{\circ}+30^{\circ}\)\(8^{\circ}=15^{\circ}-7^{\circ}\)

\(1+sin\theta+cos\theta=(1+cos\theta)+sin\theta=2cos^2\cfrac{\theta}{2}+2sin\cfrac{\theta}{2}cos\cfrac{\theta}{2}\)

\(1+sin\theta-cos\theta=(1-cos\theta)+sin\theta=2sin^2\cfrac{\theta}{2}+2sin\cfrac{\theta}{2}cos\cfrac{\theta}{2}\)

  • 常见的互余,倍角等

\((\cfrac{\pi}{4}+\theta)+(\cfrac{\pi}{4}-\theta)=\cfrac{\pi}{2}\)\((\cfrac{\pi}{3}+\theta)+(\cfrac{\pi}{6}-\theta)=\cfrac{\pi}{2}\)

\(2x\pm\cfrac{\pi}{2}=2(x\pm\cfrac{\pi}{4})\)\(2\alpha\pm\cfrac{\pi}{3}=2(\alpha\pm\cfrac{\pi}{6})\)

  • 常见的配角技巧:

\(2\alpha=(\alpha+\beta)+(\alpha-\beta)\)\(2\beta=(\alpha+\beta)-(\alpha-\beta)\)

\(3\alpha-\beta=2(\alpha-\beta)+(\alpha-\beta)\)\(3\alpha+\beta=2(\alpha+\beta)+(\alpha-\beta)\)

\(\alpha=(\alpha+\beta)-\beta\)\(\beta=\alpha-(\alpha-\beta)\)

\(\alpha=\cfrac{\alpha+\beta}{2}+\cfrac{\alpha-\beta}{2}\)\(\beta=\cfrac{\alpha+\beta}{2}-\cfrac{\alpha-\beta}{2}\)

\(\alpha=(\alpha+\beta)-\beta\)\((\cfrac{\pi}{6}-\alpha)+(\cfrac{\pi}{3}+\alpha)=\cfrac{\pi}{2}\)\((\cfrac{\pi}{4}-\alpha)+(\cfrac{\pi}{4}+\alpha)=\cfrac{\pi}{2}\)

\((\cfrac{\pi}{3}-\alpha)+(\cfrac{2\pi}{3}+\alpha)=\pi\)\((\cfrac{\pi}{4}-\alpha)+(\cfrac{3\pi}{4}+\alpha)=\pi\)

难点变形

常涉及“切化弦”,“分式通分”,“辅助角公式”等高频变形;

  • \(\tan\theta-\sqrt{3}=\cfrac{\sin\theta}{\cos\theta}-\cfrac{\sqrt{3}\cos\theta}{\cos\theta}=\cfrac{2(\sin\theta\cdot \cfrac{1}{2}-\cos\theta\cdot\cfrac{\sqrt{3}}{2})}{\cos\theta}\)
  • \(1+\sqrt{3}\tan\theta=\cfrac{\cos\theta}{\cos\theta}+\cfrac{\sqrt{3}\sin\theta}{\cos\theta}=\cfrac{\cos\theta+\sqrt{3}\sin\theta}{\cos\theta}=\cfrac{2(\cos\theta\cdot \cfrac{1}{2}+\sin\theta\cdot\cfrac{\sqrt{3}}{2})}{\cos\theta}\)

注:在具体题目中,角\(\theta\)可以是具体的值,比如\(\tan12^{\circ}-\sqrt{3}\),或\(1+\sqrt{3}\tan21^{\circ}\)

典例剖析

求值:\(\cfrac{cos85^{\circ}+sin25^{\circ}cos30^{\circ}}{cos25^{\circ}}\)

分析:这类题目往往需要将非特殊角拆分,然后约掉含有非特殊角的代数式,就得到了最终的值。

原式=\(\cfrac{cos(90^{\circ}-5^{\circ})+\cfrac{\sqrt{3}}{2}sin25^{\circ}}{cos25^{\circ}}\)\(=\cfrac{sin5^{\circ}+\cfrac{\sqrt{3}}{2}sin25^{\circ}}{cos25^{\circ}}\)

\(=\cfrac{sin(30^{\circ}-25^{\circ})+\cfrac{\sqrt{3}}{2}sin25^{\circ}}{cos25^{\circ}}\)\(=\cfrac{\cfrac{1}{2}cos25^{\circ}}{cos25^{\circ}}=\cfrac{1}{2}\)

求值:\(\cfrac{sin^250^{\circ}}{1+sin10^{\circ}}\)

分析:原式=\(\cfrac{1-cos100^{\circ}}{2(1+sin10^{\circ})}\)\(=\cfrac{1-cos(90^{\circ}+10^{\circ})}{2(1+sin10^{\circ})}\)

\(=\cfrac{1+sin10^{\circ}}{2(1+sin10^{\circ})}=\cfrac{1}{2}\)

化简求值:\(\cfrac{3-sin70^{\circ}}{2-cos^210^{\circ}}\)

分析:\(\cfrac{3-sin70^{\circ}}{2-cos^210^{\circ}}=\cfrac{3-cos20^{\circ}}{2-cos^210^{\circ}}=\cfrac{3-(2cos^210^{\circ}-1)}{2-cos^210^{\circ}}=\cfrac{2(2-cos^210^{\circ})}{2-cos^210^{\circ}}=2\)

化简求值:\(4cos50^{\circ}-tan40^{\circ}\)

分析:\(4cos50^{\circ}-tan40^{\circ}=4cos50^{\circ}-\cfrac{sin40^{\circ}}{cos40^{\circ}}\)

\(=\cfrac{4cos50^{\circ}cos40^{\circ}-sin40^{\circ}}{cos40^{\circ}}=\cfrac{4sin40^{\circ}cos40^{\circ}-sin40^{\circ}}{cos40^{\circ}}\)

\(=\cfrac{2sin80^{\circ}-sin40^{\circ}}{cos40^{\circ}}=\cfrac{2cos10^{\circ}-sin40^{\circ}}{cos40^{\circ}}=\cfrac{2cos(40^{\circ}-30^{\circ})-sin40^{\circ}}{cos40^{\circ}}\)

\(=\cfrac{2cos40^{\circ}\cdot \cfrac{\sqrt{3}}{2}+2sin40^{\circ}\cdot \cfrac{1}{2}-sin40^{\circ}}{cos40^{\circ}}=\sqrt{3}\).

思路补充:\(\sin80^{\circ}=\sin(120^{\circ}-40^{\circ})\)\(\sin40^{\circ}=\sin(10^{\circ}+30^{\circ})\)

化简求值:\(\cfrac{sin8^{\circ}+sin7^{\circ}cos15^{\circ}}{cos8^{\circ}-sin7^{\circ}sin15^{\circ}}\)

分析:\(\cfrac{sin8^{\circ}+sin7^{\circ}cos15^{\circ}}{cos8^{\circ}-sin7^{\circ}sin15^{\circ}}\)

\(=\cfrac{sin(15^{\circ}-7^{\circ})+sin7^{\circ}cos15^{\circ}}{cos(15^{\circ}-7^{\circ})-sin7^{\circ}sin15^{\circ}}\)

\(=\cfrac{sin15^{\circ}}{cos15^{\circ}}=tan15^{\circ}=2-\sqrt{3}\)

化简求值:\(\cos\cfrac{\pi}{17}\cdot\cos\cfrac{2\pi}{17}\cdot\cos\cfrac{4\pi}{17}\cdot\cos\cfrac{8\pi}{17}\)

分析:\(\cos\cfrac{\pi}{17}\cdot\cos\cfrac{2\pi}{17}\cdot\cos\cfrac{4\pi}{17}\cdot\cos\cfrac{8\pi}{17}\)

\(=\cfrac{2\sin\cfrac{\pi}{17}\cos\cfrac{\pi}{17}\cdot\cos\cfrac{2\pi}{17}\cdot\cos\cfrac{4\pi}{17}\cdot\cos\cfrac{8\pi}{17}}{2\sin\cfrac{\pi}{17}}\)

\(=\cfrac{\sin\cfrac{2\pi}{17}\cdot\cos\cfrac{2\pi}{17}\cdot\cos\cfrac{4\pi}{17}\cdot\cos\cfrac{8\pi}{17}}{2\sin\cfrac{\pi}{17}}\)

\(=\cfrac{2\sin\cfrac{2\pi}{17}\cdot\cos\cfrac{2\pi}{17}\cdot\cos\cfrac{4\pi}{17}\cdot\cos\cfrac{8\pi}{17}}{2^2\sin\cfrac{\pi}{17}}\)

\(=\cfrac{2\sin\cfrac{4\pi}{17}\cdot\cos\cfrac{4\pi}{17}\cdot\cos\cfrac{8\pi}{17}}{2^3\sin\cfrac{\pi}{17}}\)

\(=\cfrac{2\sin\cfrac{8\pi}{17}\cdot\cos\cfrac{8\pi}{17}}{2^4\sin\cfrac{\pi}{17}}\)

\(=\cfrac{\sin\cfrac{16\pi}{17}}{2^4\sin\cfrac{\pi}{17}}\)

\(=\cfrac{sin\cfrac{\pi}{17}}{2^4\sin\cfrac{\pi}{17}}\)

\(=\cfrac{1}{16}\)

已知\(sinx+cosx=\cfrac{\sqrt{2}}{2}\),化简求值:\(sin^4x+cos^4x\)

分析:由题目可知,\((sinx+cosx)^2=(\cfrac{\sqrt{2}}{2})^2\)

\(1+2sinxcosx=\cfrac{1}{2}\),故\(2sinxcosx=-\cfrac{1}{2}\)

\(sin^4x+cos^4x=(sin^2x+cos^2x)^2-2sinx^2cos^2x\)

\(=1-2sinx^2cos^2x=1-\cfrac{1}{2}(2sinxcosx)^2=1-\cfrac{1}{8}=\cfrac{7}{8}\)

化简求值:\(\cfrac{sin47^{\circ}-sin17^{\circ}cos30^{\circ}}{cos17^{\circ}}\)

分析:\(\cfrac{sin47^{\circ}-sin17^{\circ}cos30^{\circ}}{cos17^{\circ}}\)

\(=\cfrac{sin(30^{\circ}+17^{\circ})-sin17^{\circ}cos30^{\circ}}{cos17^{\circ}}\)

\(=\cfrac{sin30^{\circ}cos17^{\circ}}{cos17^{\circ}}\)

\(=\sin30^{\circ}=\cfrac{1}{2}\)

求值\(\cfrac{1+cos20^{\circ}}{2sin20^{\circ}}-sin10^{\circ}(\cfrac{1}{tan5^{\circ}}-tan5^{\circ})\)

分析:原式\(=\cfrac{2cos^210^{\circ}}{2\cdot 2sin10^{\circ}cos10^{\circ}}-sin10^{\circ}(\cfrac{cos5^{\circ}}{sin5^{\circ}}-\cfrac{sin5^{\circ}}{cos5^{\circ}})\)

\(=\cfrac{cos10^{\circ}}{2sin10^{\circ}}-sin10^{\circ}(\cfrac{cos^25^{\circ}-sin^25^{\circ}}{sin5^{\circ}cos5^{\circ}})\)

\(=\cfrac{cos10^{\circ}}{2sin10^{\circ}}-sin10^{\circ}\cfrac{2cos10^{\circ}}{2sin5^{\circ}cos5^{\circ}})\)

\(=\cfrac{cos10^{\circ}}{2sin10^{\circ}}-2cos10^{\circ}\)

\(==\cfrac{cos10^{\circ}}{2sin10^{\circ}}-\cfrac{2cos10^{\circ}\cdot 2sin10^{\circ}}{2sin10^{\circ}}\)

\(=\cfrac{cos10^{\circ}-2sin20^{\circ}}{2sin10^{\circ}}\)

\(=\cfrac{cos10^{\circ}-2sin(30^{\circ}-10^{\circ})}{2sin10^{\circ}}\)

\(=\cfrac{cos10^{\circ}-cos10^{\circ}+2\cdot \cfrac{\sqrt{3}}{2}sin10^{\circ}}{2sin10^{\circ}}\)

\(=\cfrac{\sqrt{3}}{2}\)

求值\(\cfrac{cos10^{\circ}-\sqrt{3}cos(-100^{\circ})}{\sqrt{1-sin10^{\circ}}}\)

分析:原式\(=\cfrac{cos10^{\circ}-\sqrt{3}cos(100^{\circ})}{\sqrt{1-sin10^{\circ}}}\)

\(=\cfrac{cos10^{\circ}+\sqrt{3}sin10^{\circ}}{\sqrt{1-sin10^{\circ}}}\)

\(=\cfrac{cos10^{\circ}+\sqrt{3}sin10^{\circ}}{\sqrt{(cos5^{\circ}-sin5^{\circ})^2}}\)

\(=\cfrac{cos10^{\circ}+\sqrt{3}sin10^{\circ}}{(cos5^{\circ}-sin5^{\circ})^2}\)

\(=\cfrac{2sin(10^{\circ}+30^{\circ})}{-\sqrt{2}sin(5^{\circ}-45^{\circ})}\)

\(=\cfrac{2sin40^{\circ}}{\sqrt{2}sin40^{\circ}}=\sqrt{2}\)

化简求值\(\cfrac{cos40^{\circ}}{cos25^{\circ}\cdot \sqrt{1-sin40^{\circ}}}\)

分析:原式\(=\cfrac{cos40^{\circ}}{cos25^{\circ}\cdot \sqrt{(sin20^{\circ}-cos20^{\circ})^2}}\)

\(=\cfrac{cos40^{\circ}}{cos25^{\circ}\cdot |sin20^{\circ}-cos20^{\circ}|}\)

\(=\cfrac{cos^220^{\circ}-sin^220^{\circ}}{cos25^{\circ}(cos20^{\circ}-sin20^{\circ})}\)

\(=\cfrac{cos20^{\circ}+sin20^{\circ}}{cos25^{\circ}}\)

\(=\cfrac{\sqrt{2}sin(20^{\circ}+45^{\circ})}{cos25^{\circ}}\)

\(=\cfrac{\sqrt{2}sin65^{\circ}}{cos25^{\circ}}=\sqrt{2}\).

化简求值\(\cfrac{\sqrt{3}tan12^{\circ}-3}{(4cos^212^{\circ}-2)sin12^{\circ}}\)

分析:原式=\(\cfrac{\sqrt{3}\cfrac{sin12^{\circ}}{cos12^{\circ}}-3\cfrac{cos12^{\circ}}{cos12^{\circ}}}{2(2cos^212^{\circ}-1)sin12^{\circ}}\)

\(=\cfrac{\sqrt{3}\cdot \cfrac{sin12^{\circ}-\sqrt{3}cos12^{\circ}}{cos12^{\circ}}}{2cos24^{\circ}sin12^{\circ}}\)

\(=\cfrac{\sqrt{3}\cdot 2sin(12^{\circ}-60^{\circ})}{2cos24^{\circ}sin12^{\circ}cos12^{\circ}}\)

\(=\cfrac{2\sqrt{3}sin(-48^{\circ})}{sin24^{\circ}cos24^{\circ}}=-4\sqrt{3}\)

题型变化

【2020宝鸡市质检三文科第11题】著名数学家华罗庚先生被誉为“中国现代数学之父”,他倡导的“\(0.618\)优选法"在生产和科研实践中得到了非常广泛的应用,黄金分割比\(t=\cfrac{\sqrt{5}-1}{2}\approx 0.618\),还可以表示成\(2\sin18^{\circ}\),则\(\cfrac{2\cos^{2}27^{\circ}-1}{t\sqrt{4-t^{2}}}=\)\(\qquad\)

$A.4$ $B.\sqrt{5}-1$ $C.2$ $D.\cfrac{1}{2}$

分析:由于\(t=2\sin18^{\circ}\),故有

\(\cfrac{2\cos^{2}27^{\circ}-1}{t\sqrt{4-t^{2}}}=\cfrac{\cos54^{\circ}}{2\sin18^{\circ}\sqrt{4-4\sin^{2}18^{\circ}}}=\cfrac{\cos54^{\circ}}{2\sin18^{\circ}\sqrt{4(1-\sin^{2}18^{\circ})}}\)

\(=\cfrac{\sin36^{\circ}}{2\sin18^{\circ}\cdot 2\cos18^{\circ}}=\cfrac{\sin36^{\circ}}{4\sin18^{\circ}\cos18^{\circ}}=\cfrac{1}{2}\),故选\(D\).

【2021届高三文科三轮模拟题】公元前 \(6\) 世纪,古希腊的毕达哥拉斯学派通过研究正五边形和正十边形的作图,发现了黄金分割值约为 \(0.618\),这一数值也可以表示为\(S=2\sin18^{\circ}\),若 \(S^2+t=4\) ,则 \(\cfrac{S\sqrt{t}}{2\sin^2207^{\circ}-1}\)=_____________.

解析:由于 \(S^2+t=4\) ,则 \(t=4-S^2=4-4\sin^218^{\circ}\)

\(\cfrac{S\sqrt{t}}{2\sin^2207^{\circ}-1}=\cfrac{2\sin18^{\circ}\sqrt{4-4\sin^218^{\circ}}}{2\sin^2207^{\circ}-1}\)

\(=\cfrac{2\sin18^{\circ}\cdot 2\cos18^{\circ}}{-\cos414^{\circ}}\) \(=\cfrac{2\sin36^{\circ}}{-\cos54^{\circ}}=-2\)

对应练习

化简求值\(\cfrac{\sqrt{3}-tan12^{\circ}}{(2cos^212^{\circ}-1)sin12^{\circ}}=8\)

化简求值\(sin50^{\circ}(1+\sqrt{3}tan10^{\circ})=1\)

posted @ 2018-01-31 17:54  静雅斋数学  阅读(1189)  评论(0编辑  收藏  举报
您已经努力一段时间了
活动活动喝杯咖啡吧
                  ----静雅斋